

NOVA University of Newcastle Research Online

nova.newcastle.edu.au

Cordova-Rivera, Laura; Gibson, Peter G.; Gardiner, Paul A.; McDonald, Vanessa M.; 'A systematic review of associations of physical activity and sedentary time with asthma outcomes.' Published in *Journal of Allergy and Clinical Immunology: In Practice* Vol. 6, Issue 6, p. 1968-1981.e2 (2018)

Available from: http://dx.doi.org/10.1016/j.jaip.2018.02.027

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

Accessed from: http://hdl.handle.net/1959.13/1406099

A systematic review of associations of physical activity and sedentary time with asthma outcomes

3

Authors: Laura Cordova-Rivera, BPhty(Hons)^{1, 2, 3}, Peter G Gibson, MBBS^{1, 2, 3, 4}, Paul A Gardiner,
 PhD^{5,6}, Vanessa M McDonald, PhD^{1, 2, 3,4}

⁶ ¹National Health and Medical Research Council Centre of Excellence in Severe Asthma, ²Priority

7 Research Centre for Healthy Lungs, the University of Newcastle, ³Hunter Medical Research Institute,

8 ⁴Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia. ⁵Centre

- 9 for Health Services Research, Faculty of Medicine, The University of Queensland, Woolloongabba,
- 10 Australia ⁶ Mater Research Institute, The University of Queensland, South Brisbane, Australia

11

12

- Corresponding Author: Vanessa M McDonald, Level 2 West Wing, 1 Kookaburra Circuit, New
 Lambton Heights, NSW 2305, Australia.
- 15 Phone: + (61) 2 4042 0146
- 16 Fax: + (61) 2 4042 0726
- 17 Email: vanessa.mcdonald@newcastle.edu.au

18

19 VMM is supported by an NHMRC TRIP fellowship, has participated in educational symposia funded

20 by GlaxoSmithKline, AstraZeneca, Menarini, and Novartis and has participated in advisory boards for

- 21 GlaxoSmithKline, AstraZeneca and Menarini.
- 22 PGG holds an NHMRC Practitioner Fellowship, has participated in educational symposia funded by
- 23 AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline and Novartis, and has participated in studies
- 24 funded by GlaxoSmithKline and AstraZeneca.
- 25 All other authors declare no conflicts of interests.

26

- 27 Acknowledgement of funding: This research was supported by a University of Newcastle and Priority
- 28 Research Centre for Healthy Lungs postgraduate scholarship.

29

30

32 Abstract

33

Background: Physical inactivity and high sedentary time are associated with adverse health
outcomes in several diseases. However, their impact in asthma is less clear.

36 Objective: We aimed to synthesise the literature characterising physical activity and sedentary 37 time in adults with asthma, to estimate activity levels using meta-analysis, and to evaluate 38 associations between physical activity and sedentary time and the clinical and physiological 39 characteristics of asthma.

40 Methods: Articles written in English and addressing the measurement of physical activity or
41 sedentary time in adults ≥18 years old with asthma were identified using four electronic
42 databases. Meta-analysis was used to estimate steps/day in applicable studies.

Results: There were 42 studies that met the inclusion criteria. Physical activity in asthma was 43 lower compared to controls. The pooled mean (95%CI) steps/day for people with asthma was 44 8390 (7361, 9419). Physical activity tended to be lower in females compared with males, and 45 in older people with asthma compared with their younger counterparts. Higher levels of physical 46 activity were associated with better measures of lung function, disease control, health status, 47 and health care use. Measures of sedentary time were scarce, and indicated a similar engagement 48 in this behavior between asthma participants and controls. High sedentary time was associated 49 with higher health care use, and poorer lung function, asthma control and exercise capacity. 50

Conclusions: People with asthma engage in lower levels of physical activity compared to
controls. Higher levels of physical activity may positively impact on asthma clinical outcomes.
Sedentary time should be more widely assessed.

54

56 *Highlight box:*

- What is already known about this topic? Compared to controls, subjectively measured
 physical activity seems to be reduced in adults with asthma. Higher levels of physical
 activity might have a beneficial impact on asthma.
- What does this article add to our knowledge? Physical activity is reduced in adults
 with asthma, especially in females and older people with asthma. Sedentary time did
 not differ between people with and without asthma. Higher levels of activity are
 associated with better asthma outcomes.
- *Best Study impact current management guidelines? These results suggest that addressing inactivity and sedentary time may be a potential nonpharmacological approach in the management of asthma. Disease severity, sex, and age should guide these approaches.*

68 *Key words: asthma; physical activity; sedentary time; accelerometry; questionnaire;* 69 *associations; clinical outcomes; meta-analysis.*

- 70
- 71
- 72

73 List of abbreviations:

- 74 EIB: exercise-induced bronchoconstriction
- 75 COPD: chronic obstructive pulmonary disease
- 76 BMI: body mass index
- 77 RCT: randomised control trial.
- 78 MVPA: moderate and higher intensity physical activity
- 79 ST: sedentary time
- 80 6MWD: 6-minute walk distance
- 81 Hs-CRP: high sensitivity C- reactive protein
- 82 FEV₁: forced expiratory volume in the first second
- 83 FVC: forced vital capacity

85 Introduction

86

Asthma is an obstructive airway disease that causes symptoms of dyspnoea, wheezing, and chest tightness. These symptoms, and the fear of provoking exercise induced bronchoconstriction (EIB), may have a negative impact on the engagement in physical activity in people with asthma¹⁻³.

Physical activity and sedentary time have been widely studied in the general population⁴ and 91 in chronic obstructive pulmonary disease (COPD). People with COPD are considerably less 92 active and more sedentary than people without respiratory conditions^{5, 6}. Furthermore, 93 inactivity in COPD is associated with more exacerbations resulting in hospitalisation⁷, a 94 reduced time to readmission⁸, and increased all-cause mortality⁸⁻¹⁰. As a result, there are well-95 established exercise programmes for people with COPD that seek to address physical 96 inactivity^{11, 12}. In asthma however, the role of physical activity and sedentary time is less 97 clear¹³, and thus guidelines and interventions to target these behaviors in this population are 98 limited. 99

In a prior systematic review in adults and children, Eijkemans et al.¹⁴ suggested that people 100 engaging in higher levels of physical activity might have a lower risk of asthma incidence¹⁴. In 101 adults with asthma, they also found a trend towards lower levels of physical activity compared 102 to controls¹⁴. However, none of the included studies used objective measures (accelerometry) 103 to quantify physical activity in adults, and sedentary time was not addressed. Another review 104 found that children and adolescents with and without asthma engage in a similar amount of 105 objectively measured physical activity¹⁵. Despite this evidence, there are no reviews of the 106 literature that have evaluated the prevalence of sedentary time in adults with asthma, nor 107 reviewed the use of accelerometry to quantify physical activity and sedentary time in this 108 population. Additionally, the degree to which the level of physical activity and sedentary time 109

110 impact on the airway symptoms or clinical outcomes in adults with asthma has not been111 reviewed.

Our aim therefore is to update and synthesise the evidence in relation to the prevalence of physical activity and sedentary time in adults with asthma. We conducted a meta-analysis of studies reporting steps/day in people with asthma, and sought to evaluate the associations of these behaviors with the clinical and physiological characteristics of the disease.

135 136	Methods
137	Literature search
138 139	Articles written in English, and addressing the measurement of physical activity or sedentary
140	time in adults (≥ 18 years) with asthma were identified by a comprehensive search using the
141	Medline, Embase, PEDro, and Cochrane databases. Search was conducted in April 2017, and
142	updated in October 2017, and included all articles published until the search date.
143	Eligible studies were those that: examined the prevalence and patterns of these behaviors in
144	asthma populations, or studies analysing the association of these behaviors with clinical or
145	biological markers of the disease. We did not include a filter for study design. Details of the
146	search strategy are provided in Table I.
147	
148 149	Analysis
149 150	Statistical analysis was performed using STATA 13 (Stata Corp., College Station, TX, USA).
151	The continuous outcome (mean steps/day) from relevant studies ¹⁶⁻²² was pooled using the
152	random-effect model. Authors of three studies were contacted, and provided further details of
153	their results ^{16, 20, 21} .
154	
155	
156	
157	
158	
450	

160 Results

161

The initial search yielded 2803 references. A flow diagram²³ of the literature search is provided
in Figure 1.

164

We identified 42 eligible studies investigating physical activity and/or sedentary time in adults 165 with asthma. Population characteristics are presented in Table II. From these studies, 18 166 compared the level of these behaviors in asthma to a control group^{16-19, 21, 27, 28, 30-32, 37, 39, 41, 42,} 167 ⁴⁴⁻⁴⁷. Table III summarises the physical activity measurements utilised in these 18 studies. 168 Three studies^{20, 22, 50} without a control group were also included in Table III in order to provide 169 170 further details of the activity monitors used. Associations with disease characteristics were assessed in 24 studies^{16-18, 21, 22, 24, 28, 29, 31, 33, 35, 39, 40, 42, 43, 47, 49-51, 53-57} (Table IV). Additionally, 171 two studies reported physical activity as a confounder of body mass index (BMI)^{26, 34}, and two 172 studies reported physical activity prior to a randomised controlled trial (RCT) exercise 173 intervention^{20, 38}. In five studies, the association between current asthma and different levels of 174 physical activity was assessed^{25, 26, 48, 52, 58}. In general, the studies were quite heterogeneous in 175 terms of the population and assessments of activity/sedentary time. Studies included 193,821 176 asthma participants and 1,417,540 controls. Most participants were women, and in 31% of the 177 studies the mean age was under 45 years old. Twenty-three studies used a self-reported asthma 178 diagnosis^{25-33, 36, 37, 39, 44, 46-48, 52, 53, 55-58}. Disease severity or level of control was reported in 15 179 studies, and populations included people with mild, moderate, and severe asthma^{16-18, 20-22, 26,} 180 34, 38, 40-42, 47, 49, 56 181

182 Prevalence of physical activity

183

Among studies using a control group, eleven^{16-18, 21, 28, 30, 32, 39, 41, 44, 46} (asthma sample =32,606) reported less physical activity in asthma, and six reported no difference ^{19,31,37,42,46,47,} (asthma

sample=7824). One study²⁷ (asthma sample size=1,070) reported increased physical activity in
younger adults with asthma (<40 years old), but decreased in older participants (>50 years old).
Activity monitors were used in 8 studies^{16-22,50-}. Five of them included a control group^{16-19, 21}
(Table III and V). A meta-analysis (Figure 2) found that the weighted mean (95%CI) number
of steps/day for people with asthma was 8390 (7361, 9419). In the four studies that compared

the volume and/or intensity of activity, people with asthma tended to accumulate less physical

192 activity than controls (Table V).

191

Some studies reported an effect of age and sex on activity in asthma. Three studies reported 193 that the decrease in activity in people with asthma was mostly seen in older participants (≥ 50 194 years old)^{27, 32, 46}. For instance, despite their overall results showing that people with asthma 195 were more inactive than controls, Ford et al.³² did not find statistically significant differences 196 in the association between activity and asthma status in people under the age of 60. Some 197 studies reported that males with asthma presented higher levels of activity than females with 198 asthma or than their healthy counterparts^{39, 47, 49, 51}. Furthermore, two studies demonstrated that 199 the decrease in activity that develops in older people with asthma occurs earlier, or exclusively, 200 in females than males^{27, 30}. Dogra et al.³⁰ for instance, found that the levels of physical activity 201 between middle-age and older males with asthma were similar, while older females with 202 203 asthma were considerably less active than their younger counterparts.

204 Reduced physical activity in people with asthma.

From the 11 studies reporting lower levels of physical activity in people with asthma compared to controls^{16-18,21,28,30,32,39,41,44,46}, four studies used activity monitors^{16-18, 21}. Van't Hul et al.²¹ found that people with asthma spent significantly less time walking, engaging in vigorous physical activity, and accumulated less steps/day than controls. Cordova-Rivera et al.¹⁸ reported that in participants with severe asthma, steps/day and moderate and vigorous physical

activity (MVPA) were reduced by 31.4% and 47.5% respectively compared to controls
(*P*<0.001 both results).

From the studies using questionnaires, Teramoto et al.⁴⁴ reported that control participants spent 212 an additional 60 minutes/week engaged in moderate physical activity and 67 minutes/week in 213 vigorous activity compared to the asthma group (P < 0.001). Ford et al.³² reported that people 214 with current asthma were more inactive (asthma=30.9%, never asthma=27.8% P<0.001) and 215 engaged in less vigorous physical activity (asthma=12.7%, never asthma=14.8% P<0.001) than 216 people without a history of asthma. Vancampfort et al.⁴⁶ reported that asthma was significantly 217 associated with low physical activity (engaging in <150 min/week of moderate and vigorous 218 physical activity), especially in people >50 years old (odds ratio (OR)(95%CI)1.67(1.33-2.10), 219 *P*<0.0001). 220

The level of activity decreased with loss of asthma control²¹, and increasing asthma severity¹⁶. Bahmer et al.¹⁶ reported that both steps/day and the time spent in MVPA in participants with severe asthma were reduced by 21% and 17% respectively, compared with participants with less severe disease (P<0.05).

225 Maintained physical activity in people with asthma.

In six studies there were no consistent differences in the level of the activity between the asthma and control groups^{19, 31, 37, 42, 45, 47}. One study used an activity monitor¹⁹. Verlaet et al.⁴⁷ found that the proportion of participants performing MVPA was similar among people with controlled and uncontrolled asthma compared with controls; 32%, 38.5% and 33.7% (P>0.05) for each group respectively. Liang et al.³⁷ reported that the prevalence ratio (95% CI) for young adults with asthma (<30 years old) engaging in physical activity at the recommended level was 1.09 (0.92, 1.28) compared to those without asthma.

Increased physical activity in people with asthma. 234

Chen et al.²⁷ found that younger adults with asthma achieved higher levels of activity compared 235 to their age-matched healthy counterparts, whereas this pattern of activity reversed in the older 236 age group, especially in females. The mean [Standard Error (SE)] energy expenditure (EE) for 237 men in the 25-39 years age group with asthma versus their control group was 2.16 (0.22) 238 compared to 1.72 (0.15) kcal kg⁻¹day⁻¹; and 1.60 (0.14) versus 1.28 (0.06) kcal kg⁻¹day⁻¹ in the 239 female asthma group compared to female controls (P=0.02 for both). At the age of 40 this trend 240 started to reverse, becoming statistically significant in women >55 years, and for both sexes in 241 the \geq 70 years group. In the age group \geq 70 years, males with asthma reported a mean (SE) EE 242 of 0.72 (0.34) versus age-matched controls 1.45 (0.15) kcal kg⁻¹day⁻¹, while females reported 243 a mean of 0.79 (0.17) versus 1.17 (0.07) kcal kg⁻¹day⁻¹ ($P \le 0.02$ both results). 244

Prevalence of sedentary time 245

246

Sedentary time was reported by four studies^{18, 21, 28, 47}. Two used an activity monitor^{18, 21}. Van't 247 Hul et al. reported that asthma participants spent more time lying down compared to controls 248 (hours/day mean difference (95% CI) 0.59 (0.15, 1.03) P<0.01), but less time sitting than 249 controls $(P>0.05)^{21}$. Similarly, another study did not find a significant difference in sedentary 250 time between people with severe asthma and controls (minutes/day mean \pm sd 674.4 \pm 71 versus 251 676.2 ± 65 , respectively P > 0.05)¹⁸. Doggett et al.²⁸ reported that the time spent watching TV 252 for over 10 hours/week was 50.4% in the asthma population compared to 42.9% in the non-253 asthma group (P < 0.05). 254

Associations between physical activity or sedentary time and asthma health outcomes 255

256

Twenty-seven studies reported associations between the level of activity and asthma health 257

outcomes. Five were longitudinal⁵³⁻⁵⁷. Associations with sedentary time were addressed in 258

three studies^{18, 28, 47}. Table IV reports the main findings of these studies. Further descriptions
of these association are summarised in the online supplement.

The relationship between physical activity and lung function was assessed in 10 studies¹⁶⁻ 261 ^{18,21,39,40,42,50,53,55}. Weak but significant associations were reported in eight studies¹⁶⁻ 262 ^{18,39,42,50,53,55}, from which two were of longitudinal design^{53, 55}. Measures of asthma control or 263 asthma related health status were reported in 13 studies, 12 of them of cross-sectional 264 design^{18,21,22,24,29,33,35,40,42,47,49,51,57}. Most of the studies found a positive association between 265 higher physical activity and better clinical outcomes, although in some studies these 266 associations were attenuated to the null when BMI was included as a confounder^{24, 49, 51, 57}. For 267 instance, in their longitudinal analysis, Russell et al.⁵⁷ reported that the protective effect found 268 for light physical activity on current asthma (defined as reporting asthma symptoms, taking 269 asthma medication, or having an asthma exacerbation in the last 12 months) was no longer 270 271 significant after adjusting for BMI. Vigorous physical activity was associated with more asthma symptoms in three studies^{42, 47, 57}. 272

Measures of health care utilisation were evaluated in six studies^{28, 31, 43, 51, 54, 56}. Less physical 273 activity was associated with increased exacerbation and/or higher health care utilisation in four 274 of them^{28, 31, 43, 56}. However, contradicting results were reported in the two longitudinal 275 cohorts^{54, 56}. Positive associations between measures of exercise capacity and physical activity 276 were reported in two cross-sectional studies^{18, 40}. Higher physical activity (steps/day) was 277 associated with lower systemic inflammation (high-sensitivity CRP) in one study¹⁸. No 278 significant associations were found between physical activity and measures of eosinophilic 279 airway inflammation¹⁸ 280

Higher levels of sedentary time were associated with worse asthma clinical outcomes in two
 cross-sectional studies^{18, 28}. In one of them, these associations were no longer significant after

283	adjustment for physical activity ¹⁸ . Doggett et al. ²⁸ reported an increased OR (95% CI) for
284	general practitioner (GP) consultations 2.59 (2.34, 2.87), and hospitalisations in the past year
285	1.95 (1.82, 2.08) and past 5 years 1.13 (1.07, 1.18) (P < 0.001 for all results) for adults with
286	as thma who reported >10 hours of television time/week compared to those who reported ≤ 10
287	hours.
288	
289	
290	
291	
292	
293	
294	
295	
296	
297	
298	
299	
300	
301	
302	

303 Discussion

304

This review summarises the literature in relation to the prevalence of physical activity and sedentary time in people with asthma, and the associations between these behaviors and different disease outcomes. We found that people with asthma undertake less physical activity than people without asthma, and that the level of activity in asthma seems to be influenced by age, sex, and disease severity.

We also found that people with asthma average 8390 steps/day. This is almost double the value 310 observed in COPD, where an average of 4579 steps/day was reported (FEV₁% < 50% in 55% 311 of studies included)⁵⁹. This suggests that while physical activity may be reduced in asthma, the 312 degree of reduction is not as severe as in COPD. Nevertheless, there are subgroups in the 313 asthma population where physical activity is lower^{16-18, 21}. The two studies including people 314 with severe asthma reported a median of around 5800 step/day^{16, 18}. Therefore, the estimate of 315 8390 steps may not be a value applicable to more severe populations. However, considering 316 that this is the first meta-analysis of steps performed in adults with asthma, and that the 317 objective measurement of physical activity in asthma is a fairly recent topic; this value provides 318 a reference that can be updated and developed with future studies. 319

We found that physical activity seems to be influenced by sex. Several studies reported better 320 activity outcomes in men with asthma compared to women. Similar findings have been 321 reported in children with asthma compared to controls, suggesting that lower levels of activity 322 are only present in women^{60, 61}. In the general population it has also been found that both girls⁶² 323 and adult females^{63, 64} do less activity than their male counterparts. However, the fact that the 324 decline in activity in middle-aged and older people with asthma is seen earlier in women^{27, 30}. 325 may suggest that the disease consequences are more severe, or have a greater impact on health 326 in females. Supporting this observation is evidence suggesting that among people with similar 327

asthma severity, women tend to have poorer self-reported measures of asthma control and health status⁶⁵ and are twice as likely to be admitted to hospital due to acute asthma⁶⁶. From a societal perspective, this sex difference could also be due to changes in physical activity after retirement, with women retiring at an earlier age³⁰.

We also identified a potential effect of age on the level of physical activity, showing that the 332 decrease in activity is more pronounced, or even exclusive, in the older asthma population^{27, 32,} 333 $^{37, 46}$. This is in line with evidence that younger people with asthma engaged in similar¹⁵ or 334 higher^{61, 67} levels of activity compared to their age-matched controls. Plausible biological 335 reasons could relate to the age-related changes in the lung leading to an increased work of 336 337 breathing that are more extreme in people suffering from respiratory morbidity. Furthermore, older people with asthma are likely to have a longer duration of disease, therefore may have 338 more airway remodelling resulting in incomplete reversibility of airflow limitation⁶⁸. It is also 339 340 worth mentioning that in the last 30 years, there has been a growing body of evidence that supports the adherence to exercise in people with asthma. This contradicts previous beliefs that 341 people with asthma should avoid exercise and physical activity⁶⁹. It is likely that the age-effect 342 identified in this review is linked to this paradigm shift. Finally, people over 50 years of age 343 with obstructive airway disease show a high degree of overlap in features of both asthma and 344 COPD⁶⁸, so it is possible that the activity levels of older people with asthma could be similar 345 to that of COPD populations^{5, 6, 59}; a finding that requires further investigation, and may focus 346 physical activity interventions to an older age group. 347

In terms of the associations with physical activity, there was a trend showing that higher physical activity was modestly associated with better lung function in people with asthma. In two longitudinal studies, a trend towards slower lung function decline in active people with asthma compared to inactive people was reported^{53, 55}. Studies carried out in the general

population^{70, 71} have suggested that this positive impact may be due to the counteracting effect 352 that physical activity may have on the age-related chest wall stiffening⁷⁰, or to a potential 353 positive impact on inspiratory muscle endurance⁷². Among the cross-sectional studies, the 354 results were less consistent. Interestingly, in two of the studies reporting a positive association 355 between spirometric values and physical activity^{17, 42} participants were relatively young (mean 356 age <39 years), with moderate disease severity, whereas studies in severe or uncontrolled 357 asthma population, did not find an association^{16, 21}. A systematic review of RCTs of physical 358 training in asthma⁷³ concluded that exercise was not significantly associated with spirometric 359 parameters. Similarly, in COPD, spirometric values have shown a weak to moderate 360 association with physical activity⁷⁴. Bahmer et al.¹⁶ reported that airway resistance and small 361 airway dysfunction were better markers of physical activity than spirometric values in 362 moderate and severe asthma participants. Whether the association between airflow limitation 363 and physical activity is modulated by time since diagnosis or disease severity, needs further 364 investigation. 365

Some studies reported a positive association between physical activity and asthma control^{18, 21,} 366 ^{24, 35, 47} or health status^{18, 33}, which is in line with studies reporting the beneficial impact of 367 exercise protocols on these clinical outcomes⁷⁵⁻⁷⁸. In some studies, however, the strength of 368 these associations was attenuated to the null when confounders such as BMI were included^{24,} 369 ^{49, 51, 57}, which suggests that the association between obesity and asthma control is stronger than 370 the association between activity and asthma control. Studies addressing the relationship 371 between current or incident asthma, BMI and physical activity, have shown similar results^{25,} 372 ⁵⁸. Nevertheless, another study found that the association between asthma control and MVPA 373 was still significant after adjusting for BMI, among other confounders¹⁸. This suggests that 374 375 MVPA may still have a modest but independent positive effect on asthma control, in addition to its important role in weight management⁷⁹. Some authors also found an increase in asthma 376

symptoms due to engagement in vigorous physical activity^{42, 47, 57}. Similar findings have been previously reported, especially in females^{61, 67}. A link between strenuous exercises (a component of vigorous physical activity) and the development of EIB or exercise-induced asthma symptoms has been well-documented in the literature^{80, 81}. In fact, a dose-response relationship has been proposed, where both very low levels of activity (inactivity) and vigorous activity are associated with higher risk of asthma symptoms, while exercise carried out at a moderate level shows a protective effect⁸¹.

In terms of the association with asthma exacerbation and health care use, Garcia-Aymerich et 384 al.⁵⁶ found a longitudinal dose-related protective effect of physical activity on risk of hospital 385 admission for asthma exacerbation. Fisher et al.⁵⁴ did not observe a significant association 386 between activity engagement and risk of readmission in people with asthma. However, they 387 observed the same pattern in the COPD population, and attributed this lack of association to 388 389 the small number of participants with asthma and COPD at baseline. Longitudinal studies in COPD have found that physical inactivity is strongly related to acute exacerbations resulting 390 in hospitalisation, reduced length of time until admission for an exacerbation, and increased 391 all-cause mortality⁷⁻¹⁰. The body of evidence for asthma is considerably less, and unlike studies 392 conducted in COPD^{9, 10}, very few have relied on objective physical activity measures to assess 393 394 the associations of this behavior with disease outcomes.

Data on exercise capacity was scarce^{18, 40}, but the available evidence suggests that physical activity, especially steps, is positively associated with functional exercise capacity. Interestingly, a weaker effect was observed for MVPA which may suggest that the biggest benefits are obtained by engaging in light to moderate, but more continuous physical activity, rather than shorter but intense periods¹⁸. Exercise training in patients with asthma can improve cardiopulmonary fitness, assessed by the direct oxygen consumption⁷³, and exercise capacity

measured by the 6MWD improves immediately after a 6-week exercise program (3 weekly 401 supervised sessions of walking training and strength exercises) and at three months follow-402 up⁷⁷. In an RCT, improvement in aerobic capacity and weight loss were independently 403 associated with improvements in asthma control⁸². This highlights the potential benefit of 404 promoting physical activity as a way to improve different impairments in asthma, which despite 405 of being assessed as different clinical outcomes, still affect the person in multiple dimensions 406 of the disease. 407

Fewer studies have examined sedentary time in asthma. Both studies using activity monitors 408 did not find significant differences between people with asthma and controls^{18, 21}, but both 409 groups were highly sedentary. A third study²⁸ reported that people with asthma had higher time 410 watching television than controls. However, in this study a self-reported proxy of sedentary 411 time was used. Higher sedentary time was associated with decreased exercise capacity, lung 412 function, and asthma control¹⁸, but these associations were attenuated to the null when physical 413 activity was included as a confounder. This suggests that the deleterious effect of sedentary 414 time may be overcome when engaging in some physical activity⁸³. Nevertheless, promoting 415 frequent and longer breaks of sedentary time may be a more achievable goal than increasing 416 activity levels in people with obstructive airway disease. In COPD, there are data linking 417 objectively measured sedentary behavior as an independent predictor of mortality⁸⁴. Studies 418 measuring sedentary time with postural-based accelerometers⁸⁵ are required to explore to what 419 extent sedentary time is occurring in asthma and whether it is associated with poorer asthma 420 421 outcomes.

422 Strength and limitations

423

This review followed a structured search protocol and used several electronic databases. Since 424 the review of Eijkemans et al.¹⁴, there have been a growing number of studies addressing the 425

prevalence of physical activity in asthma. Additionally, the use of activity monitors in asthma 426 is a relatively new topic, and was not addressed in the previous review. Our review also adds 427 to the literature summarising the evidence of the impact of physical activity on different asthma 428 outcomes. Furthermore, to our knowledge, there is no review reporting measures of sedentary 429 time in people with asthma. However, there are some limitations that need to be considered. 430 Our analysis was restricted to studies published in English, and thus we may have missed 431 literature published in other languages. Additionally, since we only included studies conducted 432 in adults, these results should not be generalised to children. In terms of the studies included, 433 there was a great deal of heterogeneity in the clinical asthma and activity outcomes measures. 434 as well as population characteristics. Furthermore, most of the studies were of cross-sectional 435 design. Therefore, reverse causation of the associations reported must be considered as a 436 possibility. Finally, most of the studies were performed either in mild or moderate asthma 437 populations, or severity was not reported. As such, the severe asthma population may be 438 underrepresented in this review, but this highlights the need for further research in this more 439 complex population. Nevertheless, this review provides a complete update of prevalence and 440 441 associations of these two behaviors in people with asthma and provides insight of the gaps in the literature that need to be addressed in future studies. 442

443

444

445

446

447

449 Conclusions

People with asthma appear to engage in lower levels of physical activity compared to controls. Disease outcomes seem to improve as the volume or intensity of physical activity increase. However, studies that use objective measures of activity, participants with asthma diagnosed according to guidelines¹, and more standardised measures of clinical asthma outcomes are needed. Also, further studies addressing sedentary time in asthma might help to understand whether this behavior is present, and to what extent is associated with poorer asthma outcomes. Specifics subgroups, such as those over 50 years old, and those with severe asthma are under researched, and an understanding of how age and severity interact in the relationship between activity and asthma clinical or biological outcomes is needed. Longitudinal studies and RCTs exploring the direction of the relationships between physical activity and asthma outcomes are also needed to improve the consistency of the evidence. The results of this review strongly support the need to undertake this research.

473	Refe	rences
474	1.	Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2017.
475		Available from: www.ginasthma.org. Accessed June 14, 2017.].
476	2.	Disabella V, Sherman C. Exercise for asthma patients: little risk, big rewards. Phys Sportsmed
477		1998; 26:75-84.
478	3.	Con W, Ka M, Wtb E, G S, Am W, Jy R, et al. Perceptions of asthma and exercise in
479		adolescents with and without asthma. J Asthma 2017:0.
480	4.	Lear SA, Hu W, Rangarajan S, Gasevic D, Leong D, Iqbal R, et al. The effect of physical activity
481		on mortality and cardiovascular disease in 130000 people from 17 high-income, middle-
482		income, and low-income countries: the PURE study. The Lancet 2017.
483	5.	Watz H, Waschki B, Meyer T, Magnussen H. Physical activity in patients with COPD. Eur
484		Respir J 2009; 33:262-72.
485	6.	Pitta F, Troosters T, Spruit MA, Probst VS, Decramer M, Gosselink R. Characteristics of
486		physical activities in daily life in chronic obstructive pulmonary disease. Am J Respir Crit Care
487		Med 2005; 171:972-7.
488	7.	Garcia-Aymerich J, Farrero E, Felez MA, Izquierdo J, Marrades RM, Anto JM, et al. Risk
489		factors of readmission to hospital for a COPD exacerbation: a prospective study. Thorax
490		2003; 58:100-5.
491	8.	Garcia-Aymerich J, Lange P, Benet M, Schnohr P, Anto JM. Regular physical activity reduces
492		hospital admission and mortality in chronic obstructive pulmonary disease: a population
493		based cohort study. Thorax 2006; 61:772-8.
494	9.	Waschki B, Kirsten A, Holz O, Muller KC, Meyer T, Watz H, et al. Physical activity is the
495		strongest predictor of all-cause mortality in patients with COPD: a prospective cohort study.
496		Chest 2011; 140:331-42.
497	10.	Garcia-Rio F, Rojo B, Casitas R, Lores V, Madero R, Romero D, et al. Prognostic value of the
498		objective measurement of daily physical activity in patients with COPD. Chest 2012; 142:338-
499		46.
500	11.	Spruit MA, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester C, et al. An official American
501		Thoracic Society/European Respiratory Society statement: key concepts and advances in
502	12	pulmonary rehabilitation. Am J Respir Crit Care Med 2013; 188:e13-64.
503	12.	Alison JA, McKeough ZJ, Johnston K, McNamara RJ, Spencer LM, Jenkins SC, et al. Australian
504 505	10	and New Zealand Pulmonary Rehabilitation Guidelines. Respirology 2017; 22:800-19.
505 506	13.	Watz H. Physical activity. In: ERS, editor. European Respiratory Monograph: Outcomes in Clinical Trials; 2013. p. 117-26.
506 507	14.	Eijkemans M, Mommers M, Draaisma JMT, Thijs C, Prins MH. Physical Activity and Asthma: A
508	14.	Systematic Review and Meta-Analysis. PLoS ONE 2012; 7 (12).
508	15.	Cassim R, Koplin JJ, Dharmage SC, Senaratna BC, Lodge CJ, Lowe AJ, et al. The difference in
510	15.	amount of physical activity performed by children with and without asthma: A systematic
511		review and meta-analysis. J Asthma 2016; 53:882-92.
512	16.	Bahmer T, Waschki B, Schatz F, Herzmann C, Zabel P, Kirsten AM, et al. Physical activity,
513	10.	airway resistance and small airway dysfunction in severe asthma. Eur Respir J 2017; 49.
514	17.	Bruno A, Uasuf CG, Insalaco G, Barazzoni R, Ballacchino A, Gjomarkaj M, et al. Nutritional
515	-/.	status and physical inactivity in moderated asthmatics: A pilot study. Medicine (United
516		States) 2016; 95 (31) (no pagination).
517	18.	Cordova-Rivera L, Gibson PG, Gardiner PA, Powell H, McDonald VM. Physical Activity and
518		Exercise Capacity in Severe Asthma: Key Clinical Associations. J Allergy Clin Immunol Pract
519		2017; In Press.
520	19.	Moore LE, Bhutani M, Petersen SR, McMurtry MS, Byers BW, Tedjasaputra V, et al. Physical
521		activity, fitness, and vascular health in patients with asthma. J Allergy Clin Immunol 2015;
522		136:809-11 e3.

523	20.	Scott HA, Gibson PG, Garg ML, Pretto JJ, Morgan PJ, Callister R, et al. Dietary restriction and
524		exercise improve airway inflammation and clinical outcomes in overweight and obese
525		asthma: a randomized trial. Clin Exp Allergy 2013; 43:36-49.
526	21.	Van't Hul AJ, Frouws S, Van Den Akker E, Van Lummel R, Starrenburg-Razenberg A, Van
527		Bruggen A, et al. Decreased physical activity in adults with bronchial asthma. Respiratory
528		Medicine 2016; 114:72-7.
529	22.	Vermeulen F, Chirumberro A, Rummens P, Bruyneel M, Ninane V. Relationship between the
530		sensation of activity limitation and the results of functional assessment in asthma patients. J
531		Asthma 2017; 54:570-7.
532	23.	Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic
533		reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6:e1000097.
534	24.	Bacon SL, Lemiere C, Moullec G, Ninot G, Pepin V, Lavoie KL. Association between patterns
535		of leisure time physical activity and asthma control in adult patients. BMJ Open Respiratory
536		Research 2015; 2:1-7.
537	25.	Beckett WS, Jacobs Jr DR, Xinhua YU, Iribarren C, Dale Williams O. Asthma is associated with
538		weight gain in females but not males, independent of physical activity. American Journal of
539		Respiratory and Critical Care Medicine 2001; 164:2045-50.
540	26.	Barros R, Moreira P, Padrao P, Teixeira VH, Carvalho P, Delgado L, et al. Obesity increases
541	-	the prevalence and the incidence of asthma and worsens asthma severity. Clinical Nutrition
542		2017; 36:1068-74.
543	27.	Chen Y, Dales R, Krewski D. Leisure-time energy expenditure in asthmatics and non-
544		asthmatics. Respiratory Medicine 2001; 95:13-8.
545	28.	Doggett N, Dogra S. Physical inactivity and television-viewing time among Aboriginal adults
546		with asthma: a cross-sectional analysis of the Aboriginal Peoples Survey. Health Promotion
547		and Chronic Disease Prevention in Canada 2015; 35:54-61.
548	29.	Dogra S, Baker J. Physical activity and health in Canadian asthmatics. Journal of Asthma
549		2006; 43:795-9.
550	30.	Dogra S, Meisner BA, Baker J. Psychosocial predictors of physical activity in older aged
551		asthmatics. Age & Ageing 2008; 37:449-54.
552	31.	Dogra S, Baker J, Ardern CI. The role of physical activity and body mass index in the health
553		care use of adults with asthma. Annals of Allergy, Asthma, & Immunology 2009; 102:462-8.
554	32.	Ford ES, Heath GW, Mannino DM, Redd SC. Leisure-time physical activity patterns among US
555		adults with asthma. Chest 2003; 124:432-7.
556	33.	Ford ES, Mannino DM, Redd SC, Moriarty DG, Mokdad AH. Determinants of quality of life
557		among people with asthma: findings from the Behavioral Risk Factor Surveillance System.
558		Journal of Asthma 2004; 41:327-36.
559	34.	Grammatopoulou E, Haniotou A, Douka A, Koutsouki D. Factors associated with BMI in Greek
560		adults with asthma. J Asthma 2010; 47:276-80.
561	35.	likura M, Yi S, Ichimura Y, Hori A, Izumi S, Sugiyama H, et al. Effect of lifestyle on asthma
562		control in Japanese patients: importance of periodical exercise and raw vegetable diet. PLoS
563		One 2013; 8:e68290.
564	36.	Kilpelainen M, Terho EO, Helenius H, Koskenvuo M. Body mass index and physical activity in
565		relation to asthma and atopic diseases in young adults. Respir Med 2006; 100:1518-25.
566	37.	Liang W, Chikritzhs T, Lee AH. Lifestyle of young Australian adults with asthma. Asia Pac J
567		Public Health 2015; 27:NP248-54.
568	38.	Ma J, Strub P, Xiao L, Lavori PW, Camargo CA, Jr., Wilson SR, et al. Behavioral weight loss and
569		physical activity intervention in obese adults with asthma. A randomized trial. Ann Am
570		Thorac Soc 2015; 12:1-11.
571	39.	Malkia E, Impivaara O. Intensity of physical activity and respiratory function in subjects with
572		and without bronchial asthma. Scand J Med Sci Sports 1998; 8:27-32.

573 574	40.	Mancuso CA, Choi TN, Westermann H, Briggs WM, Wenderoth S, Charlson ME. Measuring physical activity in asthma patients: two-minute walk test, repeated chair rise test, and self-
575		reported energy expenditure. J Asthma 2007; 44:333-40.
576	41.	Ramos E, de Oliveira LV, Silva AB, Costa IP, Correa JC, Costa D, et al. Peripheral muscle
577		strength and functional capacity in patients with moderate to severe asthma. Multidiscip
578		Respir Med 2015; 10:3.
579 580	42.	Ritz T, Rosenfield D, Steptoe A. Physical activity, lung function, and shortness of breath in the daily life of individuals with asthma. Chest 2010; 138:913-8.
581	43.	Strine TW, Balluz LS, Ford ES. The associations between smoking, physical inactivity, obesity,
582		and asthma severity in the general US population. J Asthma 2007; 44:651-8.
583	44.	Teramoto M, Moonie S. Physical activity participation among adult Nevadans with self-
584		reported asthma. J Asthma 2011; 48:517-22.
585	45.	Tsai YS, Lai FC, Chen SR, Jeng C. The influence of physical activity level on heart rate
586		variability among asthmatic adults. J Clin Nurs 2011; 20:111-8.
587	46.	Vancampfort D, Koyanagi A, Ward PB, Rosenbaum S, Schuch FB, Mugisha J, et al. Chronic
588		physical conditions, multimorbidity and physical activity across 46 low- and middle-income
589		countries. Int J Behav Nutr Phys Act 2017; 14:6.
590	47.	Verlaet A, Moreira A, Sa-Sousa A, Barros R, Santos R, Moreira P, et al. Physical activity in
591		adults with controlled and uncontrolled asthma as compared to healthy adults: a cross-
592		sectional study. Clin Transl Allergy 2013; 3:1.
593	48.	Vogt R, Bersamin A, Ellemberg C, Winkleby MA. Evaluation of risk factors and a community
594		intervention to increase control and treatment of asthma in a low-income semi-rural
595		California community. Journal of Asthma 2008; 45:568-74.
596	49.	Westermann H, Choi TN, Briggs WM, Charlson ME, Mancuso CA. Obesity and exercise habits
597		of asthmatic patients. Ann Allergy Asthma Immunol 2008; 101:488-94.
598	50.	Yamasaki A, Kawasaki Y, Takeda K, Harada T, Hasegawa Y, Fukushima T, et al. Relationship
599		between Oxidative Stress, Physical Activity, and Vitamin Intake in Patients with Asthma.
600		Yonago Acta Medica 2017; 60:86-93.
601	51.	Yawn BP, Rank MA, Bertram SL, Wollan PC. Obesity, low levels of physical activity and
602		smoking present opportunities for primary care asthma interventions: an analysis of baseline
603		data from The Asthma Tools Study. NPJ Prim Care Respir Med 2015; 25:15058.
604	52.	Zahran HS, Bailey C. Factors associated with asthma prevalence among racial and ethnic
605		groupsUnited States, 2009-2010 behavioral risk factor surveillance system. J Asthma 2013;
606		50:583-9.
607	53.	Brumpton BM, Langhammer A, Henriksen AH, Camargo CA, Chen Y, Romundstad PR, et al.
608		Physical activity and lung function decline in adults with asthma: The HUNT Study.
609		Respirology 2017; 22:278-83.
610	54.	Fisher JE, Loft S, Ulrik CS, Raaschou-Nielsen O, Hertel O, Tjonneland A, et al. Physical activity,
611		air pollution, and the risk of asthma and chronic obstructive pulmonary disease. American
612		Journal of Respiratory and Critical Care Medicine 2016; 194:855-65.
613	55.	Garcia-Aymerich J, Lange P, Benet M, Schnohr P, Anto JM. Regular physical activity modifies
614		smoking-related lung function decline and reduces risk of chronic obstructive pulmonary
615		disease: a population-based cohort study. Am J Respir Crit Care Med 2007; 175:458-63.
616	56.	Garcia-Aymerich J, Varraso R, Anto JM, Camargo CA, Jr. Prospective study of physical activity
617		and risk of asthma exacerbations in older women. Am J Respir Crit Care Med 2009; 179:999-
618		1003.
619	57.	Russell MA, Janson C, Real FG, Johannessen A, Waatevik M, Benediktsdottir B, et al. Physical
620		activity and asthma: A longitudinal and multi-country study. J Asthma 2017; 54:938-45.
621	58.	Bedard A, Serra I, Dumas O, Basagana X, Clavel-Chapelon F, Le Moual N, et al. Time-
622		Dependent Associations between Body Composition, Physical Activity, and Current Asthma

623		in Women: A Marginal Structural Modeling Analysis. American Journal of Epidemiology
624		2017; 186:21-8.
625	59.	Saunders T, Campbell N, Jason T, Dechman G, Hernandez P, Thompson K, et al. Objectively
626		Measured Steps/Day in Patients With Chronic Obstructive Pulmonary Disease: A Systematic
627		Review and Meta-Analysis. J Phys Act Health 2016; 13:1275-83.
628	60.	Yiallouros PK, Economou M, Kolokotroni O, Savva SC, Gavatha M, Ioannou P, et al. Gender
629		differences in objectively assessed physical activity in asthmatic and non-asthmatic children.
630		Pediatr Pulmonol 2015; 50:317-26.
631	61.	Lovstrom L, Emtner M, Alving K, Nordvall L, Borres MP, Janson C, et al. High levels of physical
632		activity are associated with poorer asthma control in young females but not in males.
633		Respirology 2016; 21:79-87.
634	62.	Riddoch CJ, Mattocks C, Deere K, Saunders J, Kirkby J, Tilling K, et al. Objective measurement
635		of levels and patterns of physical activity. Arch Dis Child 2007; 92:963-9.
636	63.	Martinez-Gonzalez MA, Varo JJ, Santos JL, De Irala J, Gibney M, Kearney J, et al. Prevalence
637		of physical activity during leisure time in the European Union. Med Sci Sports Exerc 2001;
638		33:1142-6.
639	64.	Bauman A, Bull F, Chey T, Craig CL, Ainsworth BE, Sallis JF, et al. The International Prevalence
640		Study on Physical Activity: results from 20 countries. Int J Behav Nutr Phys Act 2009; 6:21.
641	65.	Chhabra SK, Chhabra P. Gender differences in perception of dyspnea, assessment of control,
642		and quality of life in asthma. J Asthma 2011; 48:609-15.
643	66.	Singh AK, Cydulka RK, Stahmer SA, Woodruff PG, Camargo CA, Jr. Sex differences among
644		adults presenting to the emergency department with acute asthma. Multicenter Asthma
645		Research Collaboration Investigators. Arch Intern Med 1999; 159:1237-43.
646	67.	Jerning C, Martinander E, Bjerg A, Ekerljung L, Franklin KA, Jarvholm B, et al. Asthma and
647	071	physical activitya population based study results from the Swedish GA(2)LEN survey. Respir
648		Med 2013; 107:1651-8.
649	68.	Gibson PG, McDonald VM, Marks GB. Asthma in older adults. Lancet 2010; 376:803-13.
650	69.	Clark CJ. The Role of Physical Training in Asthma. Chest 1992; 101:293S-8S.
651	70.	Pelkonen M, Notkola IL, Lakka T, Tukiainen HO, Kivinen P, Nissinen A. Delaying decline in
652	70.	pulmonary function with physical activity: a 25-year follow-up. Am J Respir Crit Care Med
653		2003; 168:494-9.
654	71.	Jakes RW, Day NE, Patel B, Khaw KT, Oakes S, Luben R, et al. Physical inactivity is associated
655	/1.	with lower forced expiratory volume in 1 second - European Prospective Investigation into
656		Cancer-Norfolk prospective population study. American Journal of Epidemiology 2002;
657		156:139-47.
658	72.	Chen H, Kuo C. Relationship between respiratory muscle function and age, sex, and other
659	12.	factors. Journal of Applied Physiology 1989; 66:943-8.
660	73.	Carson KV, Chandratilleke MG, Picot J, Brinn MP, Esterman AJ, Smith BJ. Physical training for
661	75.	asthma. The Cochrane database of systematic reviews 2013; 9:CD001116.
662	74.	
	74.	Watz H, Pitta F, Rochester CL, Garcia-Aymerich J, ZuWallack R, Troosters T, et al. An official European Respiratory Society statement on physical activity in COPD. Eur Respir J 2014;
663		
664	75	44:1521-37.
665	75.	Franca-Pinto A, Mendes FAR, de Carvalho-Pinto RM, Agondi RC, Cukier A, Stelmach R, et al.
666		Aerobic training decreases bronchial hyperresponsiveness and systemic inflammation in
667	70	patients with moderate or severe asthma: A randomised controlled trial. Thorax. 2015; 10.
668	76.	Mancuso CA, Choi TN, Westermann H, Wenderoth S, Wells MT, Charlson ME. Improvement
669		in asthma quality of life in patients enrolled in a prospective study to increase lifestyle
670		physical activity. J Asthma 2013; 50:103-7.
671	77.	Turner S, Eastwood P, Cook A, Jenkins S. Improvements in symptoms and quality of life
672		following exercise training in older adults with moderate/severe persistent asthma.
673		Respiration 2011; 81:302-10.

674	78.	Mendes FA, Goncalves RC, Nunes MP, Saraiva-Romanholo BM, Cukier A, Stelmach R, et al.
675		Effects of aerobic training on psychosocial morbidity and symptoms in patients with asthma:
676	70	a randomized clinical trial. Chest 2010; 138:331-7.
677	79.	Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK, et al. American College
678		of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for
679		weight loss and prevention of weight regain for adults. Med Sci Sports Exerc 2009; 41:459-
680		
681	80.	Carlsen KH, Anderson SD, Bjermer L, Bonini S, Brusasco V, Canonica W, et al. Exercise-
682		induced asthma, respiratory and allergic disorders in elite athletes: epidemiology,
683		mechanisms and diagnosis: part I of the report from the Joint Task Force of the European
684		Respiratory Society (ERS) and the European Academy of Allergy and Clinical Immunology
685		(EAACI) in cooperation with GA2LEN. Allergy 2008; 63:387-403.
686	81.	Del Giacco SR, Firinu D, Bjermer L, Carlsen KH. Exercise and asthma: an overview. Eur Clin
687		Respir J 2015; 2:27984.
688	82.	Freitas PD, Ferreira PG, Silva AG, Stelmach R, Carvalho-Pinto RM, Fernandes FL, et al. The
689		Role of Exercise in a Weight-Loss Program on Clinical Control in Obese Adults with Asthma. A
690		Randomized Controlled Trial. American Journal of Respiratory & Critical Care Medicine 2017;
691		195:32-42.
692	83.	Ekelund U, Steene-Johannessen J, Brown WJ, Fagerland MW, Owen N, Powell KE, et al. Does
693		physical activity attenuate, or even eliminate, the detrimental association of sitting time
694		with mortality? A harmonised meta-analysis of data from more than 1 million men and
695		women. Lancet 2016; 388:1302-13010.
696	84.	Furlanetto KC, Donaria L, Schneider LP, Lopes JR, Ribeiro M, Fernandes KB, et al. Sedentary
697		Behavior Is an Independent Predictor of Mortality in Subjects With COPD. Respir Care 2017.
698	85.	Kozey-Keadle S, Libertine A, Lyden K, Staudenmayer J, Freedson PS. Validation of wearable
699		monitors for assessing sedentary behavior. Med Sci Sports Exerc 2011; 43:1561-7.
700		
701		
701		
702		
703		
703		
704		
705		
706		
707		
708		
709		
710		
711		
712		
713		
112		

714 *Table I: Terms Search*

	Search strategy: (#1) AND (#2 OR #3)
#1	Asthma* or wheez* or "bronchoconstriction"
#2	"physical activity" or ("physical exercise" or "exercise") or "walking" or "motor activity"
#3	 ("sedentary behaviour" OR "sedentary behavior" OR "sedentary time") OR ("sedentary lifestyle") OR ("internet time") OR ("computer time") OR ("television watching" OR "television viewing" OR "television time") OR ("TV watching" OR "TV viewing" OR "TV time") OR ("screen time") OR "sitting time" OR "reading time"

Cordova-Rivera

733 *Table II: Demographic characteristics of studies included*

				Asthma partic	ripants			Controls	1
Cross-sectional studi									
	Country	n	Female (%)	Age	Current smoking (%)	Disease severity (%)	n	Female (%)	Age
Bacon 2015 ²⁴	Canada	643	60	53.4 ± 15.4	8.7	n/r	n/a	n/a	n/a
Bahmer 2017 ¹⁶	Germany	146	51 Severe 53 Mild to mod.	55.5 48.1	22 24	43.1 56.8	29	38	42.1
<i>Beckett</i> 2001 ²⁵	USA	4547	52	18 to 30	41.1	n/r	4131	55.2	18-30
Barros 2017 ²⁶	Portugal	2578	62	20 to >85	21.4	Current: 44 Persist: 38 Severe:18	30066	52.4	20 to >85
Bruno 2016 ¹⁷	Italy	24	66	38.5 ± 14.2	n/r	Mild to mod.	18	55	43.1±14.3
<i>Chen</i> 2001 ²⁷	Canada	1070	61.7	12 to >70	26.7	n/r	15743	55	12 to >70
Cordova-Rivera 2017 ¹⁸	Australia	61	52.5	59 [43 - 68]	6.6	Severe	61	52.5	54 [34 - 63]
Doggett 2015 ²⁸	Canada	1830	69.2	20 to >55	33.1	n/r	18978	54.4	20 to >55
Dogra 2006 ²⁹	Canada	11243	62	40 to 44	n/r	n/r	n/a	n/a	n/a
Dogra 2008 ³⁰	Canada	1772 ^{\$} 3123 [^]	63 ^{\$} 68^	45 to 79	n/r	n/r	19864	57	65 to 79
Dogra 2009 ³¹	Canada	6835	62	20 to 64	28.5	n/r	78051	51	20 to 64
<i>Ford</i> 2003 ³²	USA	12489	64	18 to >70	n/r	n/r	147742	48.9	18 to >70
<i>Ford</i> 2004 ³³	USA	12111	63.7	44.2 (0.3)	26	n/r	n/a	n/a	n/a
Grammatopoulou 2010 ³⁴	Greece	100	79	n/r	20	Mild: 58 Mod:32 Severe: 10	n/a	n/a	n/a
Iikura	Japan	437	53.3	64 [51–74]	7.1	n/r	n/a	n/a	n/a

Cordova-Rivera

201335									
Kilpelainen 2006 ³⁶	Finland	10023	61	18-25	3.4 ^β	n/r	n/a	n/a	n/a
Liang 2015 ³⁷	Australia	723	51 ^β	18 to 29	2.7	n/r	1891	51 ^β	18 to 29
Ma 2016 ³⁸	USA	330	10.6	47.6 ± 12.4	5.8	UA	n/a	n/a	n/a
Malkia 1998 ³⁹	Finland	178	59	30 to 89	n/r	n/r	7015	30 to 89	n/r
Mancuso 2007 ⁴⁰	USA	258	75	42 ± 12	11	Mild to mod	n/a	n/a	n/a
<i>Moore</i> 2015 ¹⁹	Canada	16	38	27.8 ± 6.1	n/r	n/r	16	50	26.6 ± 5.2
<i>Ramos</i> 2015 ⁴¹	Brazil	20	70	44 ± 6.0	n/r	Mod to severe	15	93	39 ± 6.0
<i>Ritz</i> 2010 ⁴²	USA	20	70	28 ± 6.8	n/r	Mod	20	70	31.6 ± 5.9
<i>Scott</i> 2013 ²⁰	Australia	14	78.6	43.3 [37-7.8]	30.8	Mild inter: 8 Mild persist:23 Mod: 54 Severe: 15	n/a	n/a	n/a
<i>Strine</i> 2007 ⁴³	USA	11962	65.5	18 to >75	23.6	n/r	n/a	n/a	n/a
Teramoto 2011 ⁴⁴	USA	880	57.2	18 to >70	n/r	n/r	2960	n/r	18 to >70
<i>Tsai</i> 2011 ⁴⁵	Taiwan	27	44	60.8 ± 10.2	11	n/r	27	37	56.8 ± 1.1
Vancampfort 2017 ⁴⁶	LMICs	11857	50.8 ^β	18 to >65	n/r	n/r	216167	50.8 ^β	n/a
Van 't Hul 2016 ²¹	The Netherlands	226	62	47.3 ± 15.3	n/r	CA:17 PC:18 UA: 65	201	75.6	42.3 ± 16.3
<i>Verlaet</i> 2013 ⁴⁷	Portugal	CA:125 UA:78	53 85	43 ± 28 54 ± 21.5	33	61.6 38.4	606	50.5	53 ± 24
Vermeulen 2016 ²²	Belgium	20	65	39.0 ± 11.9	n/r	CA: 10 PC: 10 UA: 80	n/a	n/a	n/a
<i>Vogt</i> 2008 ⁴⁸	USA	311	72.3	18 to > 75	n/r	n/r	4420	n/a	n/a

Cordova-Rivera

Westermann 2008 ⁴⁹	USA		258	75.9	42 ± 12	n/r	Mild to mod	n/a	n/a	n/a
Yamasaki 2017 ⁵⁰	Japan		18	55.6	63 ± 11	0	n/r	n/a	n/a	n/a
Yawn 2015 ⁵¹	USA		533	76	40.6	15.4	n/r	n/a	n/a	n/a
Zahran 2013 ⁵²	USA		74779	76	18 to >65	19.5	n/r	869519	51.3	18 - 65+
Longitudinal studie	25									
	Country	Follow-up	n	Female (%)	Age*	Current smoking (%)	Disease severity (%)	n	Female (%)	Age*
Bedard 2017 ⁵⁸	France	Up to 11 years	15353	100	59.2 ± 6.3	8.5	n/r	n/a	n/a	n/a
Brumpton 2017 ⁵³	Norway	Mean 11.6 years	1329	51.6	44.1 ± 12.9	25.1	n/r	n/a	n/a	n/a
Fisher 2016 ⁵⁴	Denmark	Mean 16 years	1347	61.8	57.1 ± 4.5	34.9	n/r	n/a	n/a	n/a
Garcia-Aymerich 2007 ⁵⁶	Denmark	Mean 11 years	153	n/r	52.4 ± 11.6	n/r	n/r	n/a	n/a	n/a
Garcia- Aymerich 2009 ⁵⁷	USA	Mean 2 years	2818	100	62.7 ± 6.9	5.8	Mild inter: 20.3 Mild persist:35.6 Mod: 34.6 Severe: 9.5	n/a	n/a	n/a
Russell 2017 ⁴⁶	Norway	Mean 10 years	209 ^{&}	n/r	n/r	n/r	n/r	n/a	n/a	n/a
			947*	n/r*	n/r*	n/r*	n/r*			

734

Age reported as mean ± sd or (SE), or median [IQR], or range.

Cross-sectional data from a longitudinal cohort. B: % reported for the whole sample; & only participants with asthma at baseline. \$ Values for older adults; ^ values for middle aged adults, * results reported correspond to cross-sectional data. n/a: not assessed; n/r: not reported; Inter: intermittent; Persist: persistent; Mod: moderate asthma; CA: controlled asthma; PC: partially controlled; UA: uncontrolled asthma; LMICs: low and medium income countries.

735

736

737

Cordova-Rivera

739Table III: Physical activity measurements in studies with a control group

	Studies using questionnai	ires			
Study	Asthma definition	PA or ST measurement	PA or ST domain	Recall period	Outcome
<i>Chen</i> 2001 ²⁷	Self-reported asthma diagnosed by a health professional	PA questionnaire from National Population Health Survey Canada	LTPA	12-month	Mean daily energy expenditure (EE) (kcal kg ⁻¹ day ⁻¹)
Doggett 2015 ²⁸	Self-reported physician- diagnosed asthma and use of asthma medication.	Questionnaire	LTPA Television-viewing time (TVT)	PA: 1-week TVT: typical week in last 3 months	PA: frequency and intensity of (measured as increase of heart rate and breathing) TVT: >10 hours/week as high TVT; ≤10 hours/week as low TVT.
Dogra 2008 ³⁰	Self-reported physician- diagnosed asthma	Questionnaire from CCHS cycle 2.1	LTPA	n/r	Active (\geq 1.5 kcal/kg/day) Inactive (<1.5 kcal kg/day) (estimated from EE)
Dogra 2009 ³¹	Self-reported physician- diagnosed asthma	From CCHS cycle 3.1	LTPA	n/r	Active (>3.0 kcal/kg/day), "Moderately active" (1.5–3.0 kcal/kg/day), "inactive" (<1.5 kcal/kg/day)
<i>Ford</i> 2003 ³²	Self-reported physician- diagnosed asthma	Questionnaire from 2000 BRFSS	LTPA	1-month	Frequency and duration. EE/week, and PA Index
Liang 2015 ³⁷	Self-reported asthma	Questionnaire from Australian National Health Survey 2007- 08	РА	1-week	Intensity and frequency $\geq 800 \text{ MET}$: meeting PA guidelines
Malkia 1998 ³⁹	Self-reported physician- diagnosed asthma and spirometry.	Questionnaire	LTPA, PA at work and during commuting.	n/r	Intensity and frequency METs at work and spare time. PA during commuting
<i>Ramos</i> 2015 ⁴¹	Asthma diagnosed by a physician	IPAQ - short form	LTPA	Average day in the last week	PA from EE + duration [METs- min/week]
<i>Ritz</i> 2010 ⁴²	Asthma diagnosed by a physician	Electronic diary	PA in the past 30 minutes	3 times/day for 21 days	Frequency and intensity
Teramoto 2011 ⁴⁴	Self-reported current or lifetime asthma diagnosed by a health professional	Questionnaire from 2009 Nevada BRFSS	LTPA	1-month	Engagement on PA, meet PA guidelines. Minutes/ week of MVPA
<i>Tsai</i> 2011 ⁴⁵	Asthma diagnosed by a physician	Stanford 7-Day Physical Activity Recall	LTPA	1-week	Frequency and Intensity METs
Vancampfort 2017 ⁴⁶	Self-reported lifetime diagnosis of asthma	Extract from IPAQ	LTPA	1-week	Volume of MVPA (<150 minutes/week = low PA)
Verlaet 2013 ⁴⁷	Self-reported asthma	IPAQ - short form	LTPA Daily sitting time	Average day in the last week	LTPA: MET-min/week Volume of daily sitting time in minutes.

Cordova-Rivera

	Studies using activity monitors							
	Asthma definition	PA or ST measurement	PA or ST domain	Wear- time protocol	Outcome			
Bahmer 2017 ¹⁶	Physician-diagnosed asthma, and in specialist care for > 3 months.	SenseWear Pro Armband	Total PA	Worn for 1 week. Inclusion: ≥5 days of 22.5 h	Steps/day Average minutes of at least moderate activity/day (EE>3 METs)			
Bruno 2016 ¹⁷	Recruited according the ATS criteria	SenseWear Armband	Total PA	Worn over triceps area for 4 days, 24 h/day (excluded water-based activities) Inclusion: n/r	PA level (mins/day); Active EE (kcal/day); steps/day; Total EE (kcal/day)			
Cordova- Rivera 2017 ¹⁸	Asthma diagnosed by a respiratory physician according to GINA guidelines.	ActiGraph wGT3X-BT	Sedentary time Total PA	Worn on dominant hip for 14-consecutive days, 24 h/day (sleeping and non- wear time excluded)	Minutes/day of: sedentary time, light PA and moderate and vigorous and very vigorous PA. Steps/day			
Moore 2015 ¹⁹	History of asthma and any of the following: positive spirometry, positive methacholine challenge, $\geq 10\%$ decrease in FEV ₁ after an exercise challenge	SenseWear Pro3 Armband	Total PA	Worn over triceps area of dominant arm for 3 days, 24 h/day. Inclusion: preferably 2 weekdays, 1 weekend day.	Steps/day Energy expenditure			
*Scott 2013 ²⁰	Physician-diagnosed asthma, and history of airway hyperresponsiveness	Pedometer	Steps	Worn for 7 days, recording steps a diary, (prior randomization)	Steps/day			
Van't Hul 2016 ²¹	Asthma diagnosed by a respiratory physician and use of asthma medication.	DynaPort MoveMonitor	Total PA Sitting and lying time	Worn on lower lumbar spine for 7 consecutive days, 24 h/day (excluded water-based activities). Inclusion: ≥ 2 (PA) and ≥ 5 (lying) days of ≥ 22.5 h.	Hours/day in walking, sitting, and lying. Steps/day D. PA level (total EE/day): >1.70 active, 1.40 - 1.69 predominantly sedentary, <1.40 very inactive.			
*Vermeulen 2016 ²²	Previous asthma diagnosis, asthma exacerbation.	SenseWear Armband	Total PA	Worn for 7 days Inclusion: n/r	Steps/day, % of time at an intensity: < 3 METs, 3 to 6 METs, 6 to 9 METs and ≥ 9 METs			
*Yamasaki 2017 ⁵⁰	Asthma diagnosed by a respiratory physician.	Actiwatch 2	Total PA	Worn for 7 days Inclusion: n/r	Activity counts			

PA: physical activity; LTPA: leisure time physical activity; ST: sedentary time; EE: energy expenditure; CCHS: Canada community health survey; kcl: kilocalorie; BRFSS: Behavioral risk factor surveillance system; MET: metabolic equivalent task; IPAQ: International physical activity questionnaire; MVPA: moderate to vigorous PA; n/r: not reported. *These studies did not have a control group but were included in this table to provide further details of the activity monitors used.

Cordova-Rivera

741 *Table IV: Association between physical activity or sedentary time with asthma outcomes*

Citation	Outcome measures	Conclusions			
Bacon 2015 ²⁴	PA, ACQ and AQLQ	Participants engaging in high levels of PA (20.1±8.9 METs-h/week) were nearly 2.5 times more likely to have good control (ACQ \leq 0.8) compared with inactive patients [AOR (95% CI) 2.47 (1.06–5.73)]. Results for AQLQ were not significant.			
* <i>Bahmer</i> Steps, spirometry, body 2017 ¹⁶ plethysmography, impulse oscillometry.		Decreased PA in asthma is associated with airway resistance and small airway dysfunction, but not with airway limitation.			
Brumpton 2016 ⁵³	PA, lung function decline.	Less decline in FEV ₁ /FVC in active asthma participants than inactive asthma participants [FEV ₁ /FVC (%): -0.14 (-0.27, -0.01) (P= 0.03)]			
*Bruno 2016 ¹⁷	PA, FEV1/FVC, fat free mass (FFT) and Intracellular water (ICW).	PA positively correlated with FEV ₁ /FVC. [Rho = 0.34 (P < 0.05)]			
*Cordova-Rivera 2017 ¹⁸	ST, MVPA, Steps, 6MWD, spirometry, ACQ, AQLQ, hs-CRP, FeNO, sputum eosinophilia.	Higher levels of PA and lower levels of ST were positively associated with most of the clinical/biological outcomes, especially for Steps and exercise capacity (coeff (95% CI) 0.02 (0.00 to 0.04); $P < .01$) and systemic inflammation, and MVPA and ACQ (coeff (95% CI) -1.94 (-3.69 to -0.18); $P = 0.032$).			
Doggett 2015 ²⁸	ST (TV time), PA, health care use.	High levels of TV time associated with: more consultations (AOR (95% CI) 2.59 (2.34 2.87), hospital stays in the last year (AOR 1.95 (1.82, 2.08) and in the past 5 years (AOR = 1.13 (1.07, 1.18) Insufficient PA associated with higher health care use: hospital stays in the past year (AOR 1.16 (1.08, 1.23) or past 5 years (AOR 1.22 (1.16, 1.28)			
Dogra 2006 ²⁹	PA (EE), self-reported measures of health.	Higher PA associated to better self-reported health outcomes.			
Dogra 2009 ³¹	PA (EE), health care use.	Lower PA levels associated with higher health care use in people with asthma: Overnight hospital stays (AOR (95%CI) 1.78 (1.31, 2.41); \geq 3 GP consultations (AOR 1.26 (1.03, 1.55)			
Fisher 2016 ⁵⁴	PA, asthma readmission.	No association between PA and asthma hospital readmissions in people with asthma.			
<i>Ford</i> 2004 ³³	PA, QoL.	Physical inactivity (compared to VPA) significant independent predictor of impaired QoL: Poor or fair health OR (95% CI)2.36 (1.72, 3.22); >14 days with activity limitation: 2.76 (1.89 4.02); >14 days physically or mentally limited: 1.90 (1.59 2.32)			
Garcia-Aymerich 2009 ⁵⁶	PA (METs-h/week), asthma exacerbation.	Higher levels of PA associated with a lower risk of asthma exacerbation.			
Garcia-Aymerich 2007 ⁵⁵	Levels of PA, lung function decline.	MVPA in participants with asthma improved lung function decline by gaining 10 ml and 7 ml/ year of FEV ₁ and FVC respectively, compared to the low PA group (significance not reported)			
Ikura	PA and asthma control test (ACT)	In MVRA, periodical PA (>3 METs-h/week) was significantly associated with better asthma outcome			

742

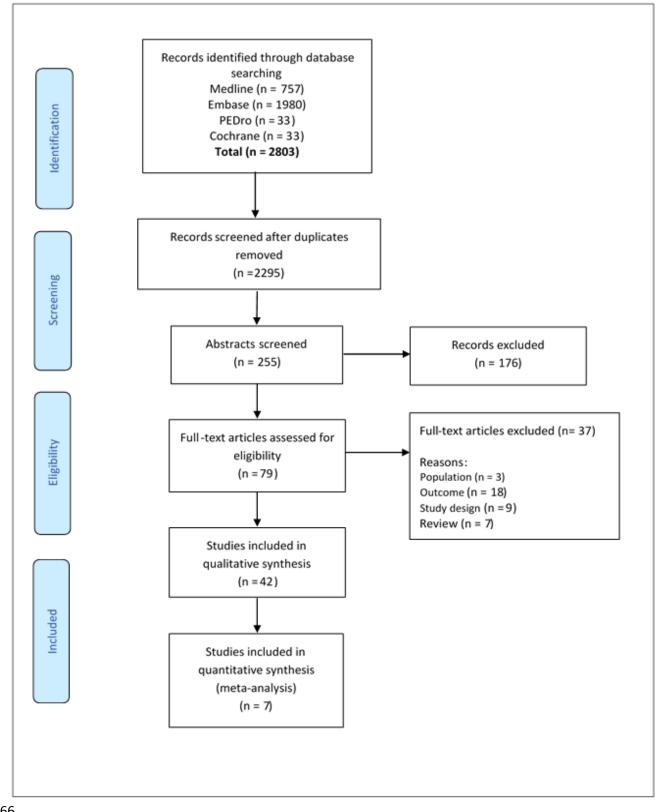
Cordova-Rivera

0010 25				
2013 ³⁵		(coefficient = 0.152, P= 0.002)		
Mancuso 2007 ⁴⁰	PA (EE), 2MWT, CRT, asthma control (ACQ), severity, and lung function (spirometry).	PA positively correlated with physical performance in both test (2MWT Rho = 0.38 ; CRT Rho= - 0.39). In MVRA, better asthma control associated with more EE from walking, but not with total EE. FEV ₁ associated with PA only in SLRA.		
Malkia 1998 ³⁹	PA Intensity (METs), lung function (spirometry).	Weak but significant positive correlations of PA intensity and lung function in men only (Rho FEV ₁ =0.26; PEF=0.35)		
<i>Ritz</i> 2010 ⁴²	PA intensity, lung function (spirometry), SOB, social activity, inhaler use.	Higher PA levels associated with higher PEF, higher FEV_1 in the morning and evening only, and more SOB.		
Russell 2016 ⁵⁷	PA with follow-up current asthma (CA) and asthma symptoms (AS)	LPA \geq 3 times/week at baseline associated with less follow-up CA [OR (95%CI) 0.44(0.22 0.89)]. Result attenuated by BMI. Result for VPA > 0.05		
		Asthma participants with normal BMI show a significant reduction of AS associated with PA, while the overweight and obese category did not.		
<i>Strine</i> 2007 ⁴³	Inactivity and measures of asthma severity.	People with asthma who were inactive had significantly poorer control compared to those who were not: >3 ER/year (AOR (95%CI):2.4 (1.6, 3.6); GP visit/year (AOR:1.5 (1.1, 2.0); Abseeintism >2 weeks/year: (AOR: 1.7 (1.3, 2.0); daily symptoms (AOR: 2.5 (1.9, 3.4); Inhaler 30+ times/month (AOR: 1.9 (1.5, 2.5)		
*Van't Hul 2016 ²¹	PA, ACQ, AQLQ and lung function (spirometry).	Low PA was correlated with poorer asthma control. No correlation between spirometry and PA (value not reported) Nil reference regarding AQOL.		
*Vermeulen 2016 ²²	Steps/day, activity limitation (ACQ question 3)	No correlation found between PA and activity limitation.		
Verlaet 2013 ⁴⁷	PA or daily sitting time (ST), and asthma control (CARAT Questionnaire)	MPA and ST predictor of controlled asthma in men: (AOR (95% CI) 1.84 (1.02, 3.30); (OR: 1.87 (1.06, 3.28) respectively. VPA doubled the risk of uncontrolled asthma in women: AOR: 1.94 (1.13-3.35).		
Westermann 2008 ⁴⁹	Exercise habits, asthma severity and asthma control (ACQ)	Higher BMI was more closely associated with exercise habits than were asthma control and severity, after adjusting for demographic variables.		
Yamasaki 2017 ⁵⁰	PA, measures of oxidative stress and antioxidants in blood, spirometry, FeNO, serum levels of vitamins, dietary vitamin intake,	Significant correlations only for PA (Activity counts/minute) and FEV ₁ /FVC.		
Yawn 2015 ⁵¹	Volume and intensity of PA, asthma control (APGAR), exacerbations.	Low PA associated with asthma control only in SLRA.		

* Studies using activity monitors. PA: physical activity, ST: sedentary time; PAL: physical activity level; LTPA: leisure-time PA; LPA: light PA; VPA: vigorous PA; MVPA: moderate and vigorous

744 PA; Steps: average steps/day; ACQ: asthma control questionnaire; AQLQ: asthma quality of life questionnaire; QoL: quality of life; 6MWD: -minute walk distance; hs-CRP: high sensitivity C-

745 reactive protein, FeNO: fraction of exhaled nitric oxide; SOB: shortness of breath; 2MWT: 2-minute walk test; CRT: chair raise test; EE: energy expenditure; METs: metabolic equivalent task;

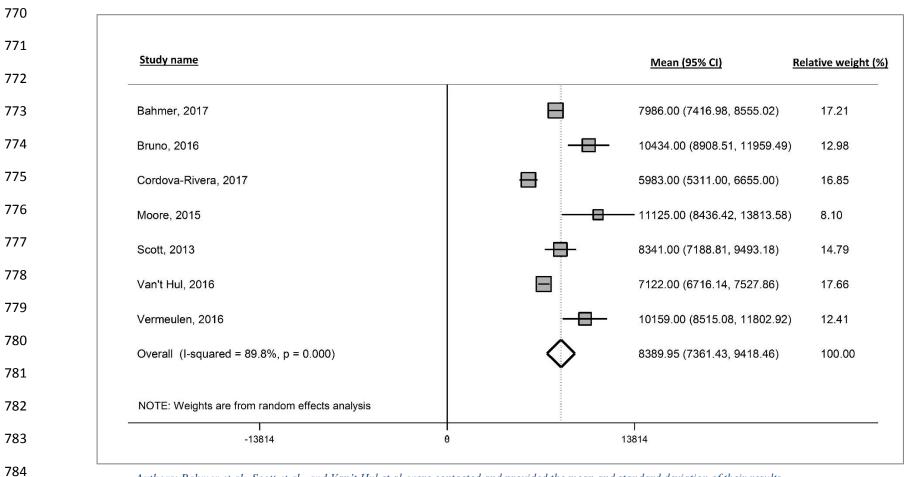

746 *RM: repetition maximum; FEV1: forced expiratory volume in the first second; ER: emergency room; GP: general practitioner; AOR: adjusted odd ratio; CI: confidence interval; SLRA: simple linear regression analysis; MVRA: multi-variable regression analysis; OR: odds ratio; AHR: adjusted hazards ratios.*

Cordova-Rivera

Table V: Activity outcomes from monitors

	Steps per day			Volume/Intensity of PA or Sedentary time (minutes ⁺ or hours [^] / day)			
	Ν	Asthma	Controls	P-value	Asthma	Controls	<i>P-value</i> 751
Bahmer 2017 ¹⁶	SA: 63 MA: 83 C:29	SA: 6174 [4822-9277] MA: 7841 [6534 - 10252]	8,912 [6800 - 11127]	< 0.001	SA:125 [68 - 172] MVPA ⁺ MA:151 [99 - 197]	163 [110 – 207]	<0.05 # /52
Bruno 2016 ¹⁷	A: 24 C: 18	10,434 ± 3,813	10860 ± 3042	> 0.05	PA ⁺ : 69.7 ± 84.2 AEE: 335 [380] ^{&} kcal/day	93.2 ± 101 486.7 [435]	0.04 0.0 7 53
Cordova-Rivera 2017 ¹⁸	SA: 61 C: 61	5362 [3999 - 7817]	7817 [6072 - 10014]	0.0002	ST ⁺ 674.4 ± 71 LPA ⁺ 193 ± 57.5 MVPA 21.9 [12.8 - 37.9] +	676.2 ± 65 171 ± 50.6 41.7 [29.3, 65.8]	> 0.05 0.0 2% 54 <0.0001 755
Moore 2015 ¹⁹	A: 16 C: 16	11125 ± 5487	10711 ± 2675	> 0.05	n/a	n/a	
Scott 2013 ²⁰	A: 33	8341 ± 3377	n/a		n/a	n/a	756
Van't Hul 2016 ²¹	A: 226 C: 201	7593 [7155 - 8030]	8,795 [8326 - 9263]	0.001	Sitting [*] : 8.21 [7.95 - 8.48] PAL: 1.53 [1.51 - 1.55] LPA [*] : 1.7 [1.65 - 1.88] MPA [*] : 1.66 [1.58 - 1.74] VPA [*] : 0.34 [0.30 - 0.38]	8.6 [8.29 - 8.86] 1.57 (1.55-1.59) 1.91 [1.80-2.02] 1.64 [1.55-11.7] 0.45 [0.41-0.49]	> 0.037 0.034 > 0.058 > 0.05 <0.001
Vermeulen 2016 ²²	A:20	10159 ± 3751	n/a		MET 0-3 (% time): 87.2 MET 3-6 (% time): 12.07	n/a	
Yamasaki 2017 ⁵⁰	A: 18	n/a	n/a		⁺ Activity counts: 283.3 ± 81.1	n/a	760

SA: severe asthma, MA: mild to moderate asthma. A: asthma, C: controls. Results expressed as mean ± standard deviation or median [IQR]. + reported as minutes/day. ^ Reported as hours/day. # P value for whole asthma sample compared to healthy control. &: reported as median [IQR] by the authors. PA: physical activity; AEE: active energy expenditure; kcal: kilocalories; PAL: physical activity level; MVPA: minutes of at least moderate PA/day. LPA: light physical activity, MPA: moderate PA, VPA: vigorous PA, ST: sedentary time, n/a: not assessed; MET 0-3: metabolic equivalent task of light PA; MET 3-6: moderate PA. Statistically significant results in bold.


765 Figure 1. PRISMA Flow Diagram Literature search. Updated 31 October 2017

766

767

Cordova-Rivera

785

Authors: Bahmer et al., Scott et al., and Van't Hul et al. were contacted and provided the mean and standard deviation of their results.